skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoe, Alison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phase change materials (PCMs) have tremendous capacity as passive components to recover and repurpose thermal energy from transient power systems. However, PCMs are only effective if the time scale of the thermal energy storage and retrieval rates match those required for a particular system. We develop a framework to assess the efficiency of pulsed thermal energy storage based on the concept of “thermal impedance,” drawing upon an analogous approach from electrical energy storage. We experimentally characterize a 1 cm thick paraffin-infiltrated copper foam composite PCM subject to pulsed heat boundary conditions up to 1 W cm−2 and demonstrate a decrease in thermal impedance by up to a factor of 2.5× in the regime in which melting occurs (τon = 10−1 to >102 s) relative to a reference case in which melting does not occur. This represents both a signature of the ability to extract or retrieve thermal energy via latent heat, as well as an experimentally accessible measure that provides insight into the internal dynamics of a composite PCM volume. These principles can serve to design the internal structure of composite PCM elements for pulsed thermal systems. 
    more » « less